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Burst avalanches in solvable models of fibrous materials
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Institutt for Fysikk, Norges Teknisk-Naturvitenskapelige Universite 384 Trondheim, Norway
(Received 18 March 1997

We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for
breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture
of several fibers occur, and the distributi@(A) of the magnitudeA of such avalanches is the central
characteristic in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and
contrasted: th@lobal model, in which the load carried by a bursting fiber is equally distributed among the
surviving members; and thHecal model, in which the nearest surviving neighbors take up the load. For the
global model we investigate in particular the conditions on the threshold distribution which would lead to
anomalous behavior, i.e., deviations from the asymptaigs) ~ A ~>2 known to be the generic behavior. For
the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution
how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.
[S1063-651%97)02009-9

PACS numbg(s): 02.50-r, 05.90:+m, 81.40.Np

I. INTRODUCTION the expected numbdd (A,N) of bursts of sizeA when the
fiber bundle is stretched until complete breakdown.

When a weak structural element in a material with sto- The model of this kind with the longest histof®] is one
chastically distributed strengths fails, the increased load om which it is assumed that the fibers obey Hookean elasticity
the remaining elements may cause further ruptures, and thuight up to the breaking point, and that the load distributes
induce a burst avalanche of a certain sixgi.e., one in itself equally among the surviving fibers. The model with
which A elements fail simultaneously. When the load is fur-
ther increased, new avalanches occur. The distribution of
avalanche sizes, either at a fixed load, or the cumulative dis-
tribution from zero load until complete breakdown of the
material, depends on several factors, in particular the thresh- F
old strength distribution and the mechanism for load sharing
between the elements.

Due to the complex interplay of failures and redistribu-
tions of local stresses, few analytical results are available in
this field; computer simulations are commonly applied —
see Herrmann and Roud] for a review. However, firm
analytical results, albeit on simplified models, are important
in order to develop a deeper understanding of universal prop-
erties and general trends. In the present paper we therefore
review and study burst events in models of fibrous materials
that are sufficiently simple to allow theoretical treatment.

The models we consider are bundleshbparallel fibers,
clamped at both ends, and stretched by a fdfcé-ig. 1).

The individual fibers in the bundle are assumed to have
strength thresholdf , i=1,2, ... N, which are independent
random variables with the same cumulative distribution
function P(f) and corresponding density functiqgf):

Prol:(fi<f)=P(f)=ffp(u)du. (1)
0

Whenever a fiber experiences a force equal to or greater than F

its strength threshold, it breaks immediately and does not

contribute to the strength of the bundle thereafter. The mod-

els differ, apart from differences in the threshold distribution,

in how stress is redistributed on the surviving fibers when a FIG. 1. A fiber bundle with periodic boundary conditions. The
fiber fails. A central quantity to be studied in the following is externally applied forcé is the control parameter.
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this democratic load redistribution is similar to mean-field 25
models in statistical physics, and is called here gihabal
model For largeN, Daniels[3] was able to determine the o3 |

asymptotic distribution for the bundle strength, a result that
has been refined lat¢#—6]. The distribution of burst ava-
lanches was first studied by Hemmer and Har{§gnTheir
main result was that for a large class of threshold distribu-
tions P(f) the bursts were distributed according to an 19 |
asymptotic power law,
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with a universal exponent

FIG. 2. The solid curve indicates the total forl€éf) as a func-

tion of f — the force per surviving fiber, Ed4). However, when

(€©)) our control parameter iB rather thanf, the system will follow the

broken line,Fy,=LMF F(f), defined in Eq.(5). The avalanches
eare the horizontal parts &f,(f). HereN=100.

e
I
N o

In Sec. Il we show that for special threshold distributions th
power law(2) is not obeyed.

The assumption of global load sharing among survivingIar
fibers is often unrealistic, and it is natural to consider model§h
in which the extra stresses by a fiber rupture are taken up b%
the fibers in the immediate vicinity. The extreme version is
to assume that only theearest-neighboisurviving fibers _ _
take part in the load-sharing. In a one-dimensional geometry, (FXH)=NF1=P(f)]. ©)
as in Fig. 1, precisely two fibers, one on each side, share the : .
extra stress. When the strength thresholds take only two Vg];'wel}mus'It?]:sﬂ:ﬁan;i?nner\r?zifrseusrgce)rfgf?rg;)n Tc? ?haes\;;%g n;g;q
ues, the bundle strength distribution has been found analytb—vhicﬁ d(F)/df vanishes. This gives ¢
cally [8—10]. One interesting result is that the average bundle '
strength has a logarithmic size effect. The distribution of 1-P(f.)—fp(f)=0 %)
burst avalanches for such models with local load sharing has ¢ Temel
not yet been determined, but simulatiddd,12 show that
this model isnotin the same universality class as the global
model. The challenge to determine the burst distribution b
other means than simulations remains, and that this is p
sible, at least in a special caggec. lll), is one of the main
results of the present paper.

It is the fluctuations ir(f) that create avalanches. For a
ge sample the fluctuations will be small deviations from
e average macroscopic characteristifs. This average
tal force is given by

In Ref. [7] the burst distribution was derived using the
fiber elongationx as the independent variable, under the as-
ysumption that Hooke’s law holds up to the threshold for
O?)'reaking. Here, however, we formulate everything in terms
of the force per fiberf, and simplify the derivation by using
directly the fact that the thresholds in a small intervaf afre

Poisson distributed.
II. GLOBAL MODEL

In the global model the total force on a fiber bundle is A. Burst distribution
distributed evenly on the surviving fibers. At a forEeper Let us consider a small force-per-fiber interval
SUrViVing ﬁber, the total force on the bundle is (f,f+df) in a range where the average for@)(f) in-
creases withf. For a large numbeN of fibers the expected
F(H)=Nf[1-&(f)], (4 number of surviving fibers isl[ 1— P(f)]. The thresholds in

the interval, of which there ardlp(f)df, will be Poisson
where¢(f) is the fraction of failed fibers. In Fig. 2 we show (distributed. Whe is arbitrarily large, the burst sizes can be
an example of & vs f. We have in mind an experiment in arbitrary large in any finite interval of.
which the forceF, our control parameteiFig. 1), is steadily Assume that an infinitesimal increase in the external force
increasing. This implies that not all parts of tRéf) curve  results in a break of a fiber with threshdld Then the load
are physically realized. The experimentally relevant functiorthat this fiber suffered, will be redistributed on the
is N[1-P(f)] remaining fibers; thus they experience a load

increase
Fon(f)=LMF F(f), (5
f
the least monotonic functiofLMF) not less tharF(f). A of= N[1-P(f)]" ®
horizontal part offF,,(f) corresponds to an avalanche, the
size of which is characterized by the number of maxima ofThe averagenumber of fibers that break as a result of this
F(f) within the corresponding range of load increase is
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fp(f h d
a=a(f)=Np(f)5f=1_p—;()f). 9 =(1-a)e athO(ad) (Zd) e ®d (12

For a burst of sizé\ the increase in load per fiber will be Finally we take the limitd— <, for which the last term van-
a factorA larger than the quantity8), and an average num- ishes. Form>1 the sum must vanish since the left-hand side
ber a(f)A will break. The probability that precisely —1 of Eqg. (12) is non-negative, while the factor (a) is nega-
fibers break as a consequence of the first failure is given by tive. Fora<1, on the other hand, we find
Poisson distribution with this average, i.e., it equals

Py(f)=lim Py(f|d)=1—a, (13
aA)At =
Le_‘ﬂ- (10 . . .
(A-1)! where a=a(f). The physical explanation of the different

behavior fora>1 anda<1 is straightforward: The maxi-
This is not sufficient, however. We must ensure that themum of the total force on the bundle occursfatfor which
thresholds for thesé —1 fibers are not so high that the a(f;)=1 [see Eqs(7) and(9)], so thata(f)>1 corresponds
avalanche stops before reaching sizeThis requires that at  to f values almost certainly involved in the final catastrophi-
leastn of the thresholds are in the intervd, €+ nof), for cal burst. The region of interest for us is therefore when
1=n=<A-1. In other words, if we consider th® intervals a(f)<1, where avalanches on a microscopic scale occur.
(f,f+6of), (f+of,f+26f), ..., (f+(A—-1)6,f+Asf), Thisisinaccordance with what we found in the beginning of
we must find at mosh— 1 thresholds in the last intervals.  this section, viz. that the burst of a fiber with threshéld
There is the sama priori probability to find a threshold in leads immediately to an average numbéf) of additional
any interval. The solution to this combinatorial problem isfailures.
given in Appendix A. The resulting probability to find all Summing up, we obtain the probability that the fiber with
intermediate thresholds weak enough equals Tombining  thresholdf is the first fiber in an avalanche of sizeas the
this with Eq.(10), we have, for the probabilityp(A,f) that  product
the breaking of the first fiber results in a burst of size

A1 O(f)= (A, F)Py(f)= a(f)* temai[1—a(f)],
a(f)rte—aha, (11) ' (14)

wherea(f) is given by Eq.(9),

A-1

(A, )=

This gives the probability of a burst of size, as a con-
sequence of a fiber burst due to an infinitesimal increase in fp(f)
the external load. However, we still have to ensure that the a(f)= 1-P(f)"
burst actuallystartswith the fiber in question and is not part
of a larger avalanche starting with another, weaker, fiber. Let = Since the number of fibers with threshold ify{+ &f) is

us determine the probability,(f) that this initial condition  Np(f)df, the burst distribution is given by
is fulfilled.

For that purpose consider tlde- 1 fibers with the largest D(A)
thresholds belowf. If there is no strength threshold in the N _J o(f)p(f)df
interval (f — &6f,f), at most one threshold value in the inter-
val (f—26f,f), ..., and amostd—1 values in the interval ATt
(f—dof,f), then the fiber bundle cannot, at any of these N J (f)
previousf values, withstand the external load that forces the
fiber with thresholdf to break. The probability that there are (15
preciselyh fiber thresholds in the intervaf ¢ §fd,f) equals

“aO8[1—a(f)]p(f)df.

For large A the maximum contribution to the integral

(ad)" comes from the neighborhood of the upper integration limit,
2 e-ad since a(f)e 3" is maximal fora(f)=1, i.e., for f=f,.

h! Expansion around the saddle point and integration yields the

asymptotic behavior

Dividing the interval intod subintervals each of lengthf,
the probabilityph,d that these conditions are fulfilled is ex- D(A)/NxA™5?2 (16
actly given by the solution of the combinatorial problem in
Appendix A: py, y=1—h/d. Summing over the possible val- universal for those threshold distributions for which the as-

ues ofh, we obtain the probability that the avalanche cannosumption of a single maximum & )(f) is valid.

have started with the failure of a fiber with any of the Note that if the experiment had been stopped before com-
nearest-neighbor threshold values belfiw plete breakdown, at a force per fibigg<f., the asymptotic
behavior would have beeexponentialrather than a power
ST SR G P IaW:
bl )—h:O h! d D(A)/NOCA—5/2e—[a(fm)—l—lna(fm)]A. (17)
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In the form 25
D(A)xA~7e 4% with Agx(f.—f)"", (18

the breakdown process is similar to a critical phenomena

with a critical point at total breakdow{rL3]. The distribution

follows a power law with indexp=3 with a cutoff that di- i A

verges at total failure with an index= 3. DSy
What happens when the average strend@h(f) curve

does not have a uniqgue maximum? If it has several parabolic

maxima, and the absolute maximum does not come(fiest

at the lowestf valug, then there will be several avalanches

of macroscopic size in the sense that a finite fraction ofthe 1~51 5 3'5 5'5

fibers break simultaneouslyl4]. The asymptoticg16) is ' ' ¢ ’

thereby unaffected, however. We turn next to threshold dis-

tributions that are more interesting because they lead to dif- FG. 3. The threshold distribution densip(f) and the macro-

ferent asymptotics. scopic bundle strengttF)(f) for distribution (17), with f,=2f,
and fora= 3 (upper curvg 3 (middle curve, and$ (lower curve.
B. Strong threshold distributions The broken part of thex=2/3-curve is unstable and the macro-

. . scopic bundle strength will follow the solid line.
Rather than consider bundle strength functidig(f) P g

with several parabolic maxima, we study now cases in which

there is no such maximum. We are patrticularly interested in D(A) _ l1-«a AA_l[ae_a]Az l1-«a A3 el a]d
the asymptotics of the burst distributions. N a Al a2 '
Model examples of such threshold distributions are (22)
B(f)= 0 for f<f, 19 In other cases it is advantageous to change integration
Cl1-[1+(f—f)/f, 17 for f>f,. variable in Eq.(15) from f to a:
Herea andf, are positive parameters, afidis a reference D(A) AA°1 1 a I
qguantity which for simplicity we set equal to unity in the N eSAl @t L(1—f )“Lf (a—a)
following. These distributions are all characterized by di- ' 0 0
verging moments. Whea<1, even the first moment — the X (1—a)a ‘(ae'"?)Ada. (23

mean — as well as all other moments diverge. This class of
threshold distributions are rich enough to exhibit severalThe asymptotics for largd, beyond theA ~*2? dependence

qualitatively different avalanche distributions. of the prefactor, is determined by tde-dependent factor in
The corresponding macroscopic bundle strength per fibethe integrand. The maximum afe! ~2 is unity, obtained for
is, according to Eq(6), a=1, and the asymptotics depends crucially on whether
a=1 falls outside the range of integration, or insigteclud-
f for f<f, ing the border. If the maximum falls inside the range of
(F)() _ f (20) integration theD (A)«A %2 dependence remains. A special
N —  for f>f,. case of this isx=1, for which the maximum of the integrand
(1+f—fg)* is located at the integration limit and the macroscopic force

has a “quadratic” maximunat infinity.
Another special case iafy=1 (and a<1), for which
again the standard asymptotiss >? is valid. In this instance

the macroscopic force has a quadratimimumat f =, (see

In Fig. 3 some threshold distributiorsf) and the corre-
sponding macroscopic force curvgs)(f) are sketched. We
note that where—1, the plateau in Eq20) becomes infi-

nitely wide. . 1 " . . .
The distribution of avalanche sizes is given by Etp).  F19- 3 for @=3), and critical behavior arises just as well
In the present case the functiaif) takes the form from a minimum as from a maximum. o
In the remaining cases, in whicn=1 is not within the
fp(f) of range of integration in Eq23), the avalanche distribution is
a(f)=1_ P 17Ty (21)  always a power law with an exponential cutoff,
. . o ) D(A)
A simple special case =1, corresponding to T ATEAD (24)
N .

p(fy=af * 1 for f=1,
Here, however¢ and A depend on the parameter valuigs
since then functiorf21) is independent of: and «. This is easy to understand. Since

a(f)=a. da(f)  a(1-fo)

This at once gives df  (1+f-fp)?

(25
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TABLE I. Asymptotic behavior of the burst distribution for
strong threshold distributions in the global model.

Parameters Asymptotics

0<f,<la<l
0<f,<la=1

A7(3/2)7a(aelfa)A
A75/2

fo=1la<1l AT aelm o)A
1<fo<a ! A5 of jetafoys
1<fo=a* AT52

1<a '<f A5l 40

we see thaa(f) is a monotonically decreasing function for
fo>1, so that the maximum ofe! 2 is obtained at the
lower limit f=f,, wherea= «af,. The asymptotics

D(A)xA~5(af el fo)d (26)
follows.

This is true merely forfy<1, however. Forfy>1 the
macroscopic force F)(f) decreasesearf=f,, so that a
macroscopic burst takes place at a fofgeper fiber, and
stabilization is obtained at a larger fordée (Fig. 3). The
subsequent bursts have an asymptotics

D(A)xA~%a(fy)et ) (27)
determined by the neighborhood b f ;.

For f,<1, the maximum ofae' 2 is obtained aff =oc,
leading to the asymptotics

D(A)xA~ 2 a(gelmm)A, (28)

reflecting the power-law behavior of the integrand at infinity.
The results are summarized in Table I. Note that the

fo=1 result(22) cannot be obtained by puttirfg=1 in Eq.
(26), since in Eq.(23) the order of the limitsA—« and
fo—1 is crucial.

Ill. LOCAL MODEL
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one-half the force-per-fiber, is a convenient variable to use as
the drivingforce parameterThis model has been discussed
previously[8—10,15-1Tfor a different purpose. Preliminary
studieg 11,12 of the avalanche distribution for some thresh-
old strength distributions have not yielded analytical results
but simulation results that show convincingly that the local
model is not in the same univerality class as the global
model.

In order to obtain explicit results we assume for the fiber
strengths the simplest possible casenpdormthreshold dis-
tribution. In units of the maximum threshold,

f for 0sf<1

P(H=1,

for f=1. (31)

Avalanches in the local and the global models have dif-
ferent characters. In the local model an avalanche unroll with
one failure acting as the seed. If many neighboring fibers
have failed, the load on the fibers on each side is high, and if
they burst the load on the new neighbors will be even higher,
etc. In this way a weak region in the bundle may be respon-
sible for the failure of the whole bundle. For a large number
N of fibers the probability of a weak region somewhere is
high, and this explains in a qualitative way that the maxi-
mum load the bundle are able to carry does not increase
proportional toN, but slower than linear.

The load distribution rul€29) implies that an avalanche
of size A does necessarily lead to a complete breakdown of
the whole bundle if the external force is too high, i.e.xif
exceeds a critical value,,,.. Since here a fiber can at most
take a load of unity, we have

1
Xmax—m. (32)

The strategy of the derivation is to first establish a set of
recursion relations between quantities that give probabilities
of certain configurations at fixed external force, i.e., at fixed
x. Below (Sec. Ill B), we connect this with the size distribu-
tion of avalanches for alkk up to the critical value,.

The assumption of global load sharing among surviving

fibers is often unrealistic, since fibers in the neighborhood of
the failed fiber are expected to take most of the load increase.
The extreme form for local load redistribution is that all ex-

A. Recursion relations

We will use the terminology that thenagnitudeof an

tra stresses caused by a fiber failure are taken up by thavalanche is the number of failing fibers in the avalanche,

nearest-neighbosurviving fibers.
The simplest geometry is one-dimensional so thatNhe

and thelength of an avalanche is the number of fibers be-
tween the nearest surviving fibers on each side of the ava-

fibers are ordered linearly, without or with periodic boundarylanche. The length can be larger than the magnitude since it

conditions(Fig. 1). In this case precisely two fibers, one on

may include fibers that have failed in previous avalanches.

each side, take up, and divide equally, the extra stress. At a We defineS(l;x), thegap probability to be the probabil-
total forceF,; on the bundle the force on a fiber surroundedity (at given force parametet) that in a selected region of

by n, previously failed fibers on the left-hand side, andn
the right-hand side, is then

Flo[, , 1 B
N 1+ E(n,+nr) =x(2+n,+n,). (29
Here
_ Frot
XN 30

| consecutive fibers all fibers have failed, assuming the two
fibers on each side to be intact. We &0;x) =1 by defini-
tion.

Another central quantity is the probability density
p(l,a;x). We define it by selecting a region btonsecutive
fibers, and letp(l,a;x)dx be the probability that a force
increase fronx to x+dx leads to an avalanche of this length
| and of magnitude.

The state at force parametethat allL fibers have failed
must have appeared for some force parameter in the range
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(0x), and by a burst of some magnitu@ein the range
(1,L). Thus

L
S(L;x)=a§l fo p(L,a;y)dy. (33
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crease i+ 1)x on the left fiber, the probability of its failure
is (n+1)x. When all possible positions @ are taken into
account, we have

-1
p(1+1,1:x)dx= Zo S(I—=n—=1;x)(I+1)dx

Let us now obtain expressions for the probability density

p(L,a;x), first for the special case that the magnitualés

X S(n;x)(n+1)x. (36)

unity. Just one fiber fails in this burst, and in an avalanche of
length L thereforeL —1 of the neighboring fibers must al- Similarly,

ready have failed. By E¢29), the force on the fiber just
before it fails is L +1)x, and for the uniform distribution

I-1

the probability that it fails due to a force parameter increase p,(1+1,1,x)= E S(I—n—=1;x)(1+1)S(n;x)(I —n)x

dxis just (L+1)dx. The probability of the burst of magni-
tude 1 to occur whem— x+ dx is this probability of failure
of the single remaining fiberL(+ 1)dx, times the probabil-

ity that theL — 1 neighbors have already failed. The latter is
given by the appropriate gap probabilities. Since the position

of the failing fiber is arbitrary in the interval, we have

L-1
p(L,1;x)dx= ZO S(L—i—1;x)(L+1)dxSi;x). (34)

We next consider
p(L,a;x) with an internal avalanche of magnitudelarger

=p(I1+1,1x). (37

The corresponding expressions for(L+1,a;x) and
pi(L+1,a;x), with a larger than unity, are more compli-
cated. The internal avalanche startedxsy x+ dx proceeds
so that the final failure is either the leftmost or the rightmost
of the a fibers, or both. If both go simultaneously, we make
the arbitrary definition that in such a case the right-hand
neighbor fails first. This secures a unique sequential ordering

expressions for the probability of failures.

Consider firstp,(L+1,a+1;x), and denote the last sur-

than unity. For that purpose we introduce two new quantiviving fiber on the right-hand side @& Assume first that the

ties: Letp,(L+1,a;x)dx be the probability that a fiber fails
because a force parameter increasex+dx starts, on its
right-hand side, an avalanche of magnitwdénot counting
the ultimate fiber on the left-hand sidand of lengthL.
Similarly p,(L+1,a;x)dx is the probability that a fiber fails
because the force parameter increasex + dx starts, on its
left-hand side, an avalanche of magnitualeand of length
L.

Consider the event described pgl ,a;x), and let the last
of the a fibers that fail be fiberF. The force distribution
mechanism in the local model implies thatis either the
leftmost or the rightmost of tha fibers. The first possibility
implies that the increase— x+ dx induces the first failure to

rightmost of thea internal fibers fails last, and let this fiber
havei fibers on its left-hand side arld—i—1 failed fibers
on the right-hand side. The probability that this right-hand
side fiber fails undex— x+ dx with an internal avalanche of
magnitudea and lengthi is just p,(i+1,a;x)dx, and the
probability of findingL —i — 1 failed fibers on the right-hand
side is given by the gap probabili§(L —i—1;x). After the
rightmost internal fiber has failed the load increase on the
Fis (i+1)x, which also equals its probability of failure. The
other alternative is that the leftmost of theinternal fibers
fails last, with, say,i fibers on its right-hand side, and
L—i—1 failed fibers on its left. Then the extra load increase
on F, and hence its probability of failure, i€ i)x. Includ-

the right of F, which starts an avalanche of magnitudeing all possible positions we end up with

a—1 and lengthi, say, to the right of . Here
a—1<i<L-1, of course, andF must haveL—i—1 previ-
ously failed fibers on its left-hand side.

Including all possibilities, we have

L-1

= > [S(L—i-

i=a—1

p(L,a;x) 1x)p(i+1la—1;x)

+p(i+1la—1;x)S(L—i—1;x)], (35

L-1
pr(L+1la+1x)= >, S(L—i—1x)[p,(i+1a;x)(i+1)x
=0
+p(i+1a;x)(L—i)x]. (38
By a similar argument the corresponding expression for
p/(L+1,a+1;x) is built up. However, when in this case the

rightmost of the internal fibers fails last we must add the
probability that the leftmost and the rightmost fibers are si-

where the second term represents events in which the firgh jtaneously overburdened. Lettimg(i +2,a;x)dx be the

failure occurs to thdeft of F.
On the other hand we want to exprgg$¢l +1,a;x) and

p,(I+21,a;x) in terms of previously defined quantities. For
magnitudea=1 this is relatively simple. Let the single fiber

(call it G) that starts the process hamealready failed fibers
to the right and |-n—1 fibers to the left, with
0=n=I-1. The probability that fibeg fails under the load
increasex—x+dx is (I+1)dx for the uniform threshold
distribution. Since the failure of fibef causes a load in-

probability that an avalanche of lengthand sizea makes
both neighbor fibers fail, we have

L-1

p(L+la+1;x)= __EO S(L—i—1;x)[p (i +1,a,%) (i +1)x

+p(i+1la;xX)(L—i)x+py(i+2,a;x)].
(39
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Finally, the recursion relations fgr, close the set. One L-1
sees easily that when the failure of the two end fibers isp,(L+2,a+1;x)= E S(L—i—21;x)(i +1)x[ps(i+1,a;x)
caused by a single internal fiber burst due to the force in-

crease fronx to x+dx, we have X(L=i)x+py(i+2,a;x)]. (48)

L-1
pZ(L+2,1;x)=_ZO S(L—i—1;x)(L+1)

XS(i;x)(i+1)x(L—i)x.

Here (L+1)dx is the probability that the single fiber fails,
(i+1)x is the probability that theit+1) new failures on the
right makes the left-hand-side fiber break, while—<{i)x is
the probability that thel(—i) new failures on the left makes
the right-hand-side fiber break.

(40

Starting withS(0;x)=1, one easily proves by induction

the following x dependence of all quantities involvgt3]:

When the failure of the two end fibers are caused by an

internal avalanche involving>1 fibers we may argue along
the same lines as fqu;, with the result

S(L:x)=S(L)x", (49
p(L,a;x)=p(L,a)x" "1, (50
ps(L+1a;x)=pg(L+1a)x", (51)
pa(L+2.a;x)=p,y(L+2,a)x-*1. (52)

In x-independent form the recursion relations then take

the form (with a>0)

po(L+2a+1;x)

L-1
= Zo S(L—=i—1;))[p(i+1la;x)(i+1)x(L—-i)x

+(p,(i+1a;x)(L—i)x+py(i+2a;x)(i+1)x].
(41

We can simplify the set of equations somewhat by intro-
ducing the sunps=p,+p,, with the results

L
S(L;x)=a§1 fo p(L,a;y)dy,

(42)
L-1
p(L,l;x)=Z0 S(L—i—1;x)(L+1)S(i;x), (43
L—-1
p(L,a+1;x)=ZoS(L—i—l;x)ps(i+1,a;x), (44)
L-1
pS(L+1,1;x)=ZO S(L—i—1:X)(L+1)S(i:x)(L+1)x,
(45)
L-1

p(L+1a+1;x)= __EO S(L—i—1;x)[ps(i+1a;%)

+p,(i+2a;x)] (46)
L-1
po(L+2,1x)= E S(L—i—21;x)(L+1)S(i;x)
i=0
X (I +1)x(L—=i)x, 47

S»<L>=L-1a§1 p(L,a), (53)
L-1
p(|_,1)=i§O S(L—i—1)(L+1)S(i), (54)
L-1
p(L,a+1)=ZO S(L—i—-1)pgi+1a), (55

L-1

pS(L+1,1)=;) S(L—i—1)(L+1)S(i)(L+1), (56)

p(L+1la+1)= 2 (L—i—1)[ps(i+1a)+p,(i+2a)],

(57)
L-1
paL+2,1D)= 20 S(L—i—=1)(L+1)S(i)(i+1)(L—1),
(58)
L-1

p2(L+2,a+1)=ZO S(L—i—1)(i+1)[psi+1a)(L—i)

+po(i+2a)]. (59

Let us finally note that the feature of the uniform distri-
bution that makes the derivation simpler than for other dis-
tributions is that the probability for failure of a fiber is given
by the load increaseéndependenof the actual load level.

We can now calculate recursive§(L;x) and p(L,a;x)
for integerL anda. By Egs.(49)—(52) the x dependence is
trivial.
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B. Asymptotic burst distribution TABLE Il. The burst distributiorD (A) for the local model with

a bundle ofN=20 000 fibers. The simulation results are based on
4 000 000 samples. The calculated values are based oi(6B)y.
and have been multiplied by 4 000 000.

In order to use the quantitative information obtained
above we must first determine the survival probability
Ps(N,x) that a fiber bundle is able to tolerate a force per
fiber equal to 2. Noting that in this model avalanches are ,
local phenomena, and that two failed fibers are only corre-
lated when all fibers in between have failed, the survivall 8327 378752 8327 331808

Simulation Calculation

probability P¢(N,x) is expected to depenekponentiallyon 2 491 305573 491331178
the lengthN for largeN, so that 3 72126 803 72 114 644
4 17 179 080 17 180414
lim N‘llnPs(N,x) = —t(x) (60) 5 5590 887 5591 243
N 6 2243916 2243012
7 1030833 1031678
is finite. The exponential form of the survival probability is 8 515309 515310
discussed and confirmed in other studi#s,17,19. 9 268 589 268139
We assume periodic boundary conditions, and number th&0 140911 140751
fibers from an arbitrary starting point. We define 11 72251 727701
P:(n,L;x) to be the probability, at force parameterthat 12 36 525 36277
among then first fibers there is no fatal burst, and that the 13 17523 17285
last L fibers of these have all failed. Fiber number 1 is 14 8015 7835
assumed to hold. We will now establish a recursion relatioril5 3352 3392
between theP¢(n,L;Xx). 16 1442 1418
Consider a region oh+1+L fibers in which no fatal 17 559 579
burst has occurred, and where the lastibers have failed. 18 223 233
The probability of this configuration B;(n+1+L,L;x). In 19 90 93.8
the region to the left of fiber number+1, let the length of 20 40 375
the region of broken fibers that contain fiber numbebe 21 18 15.0
i, wherei may take all values between zgjibfiber number 22 10 6.0
n is intach andM (x) =[x~ 1—2]. The region to the right of 23 1 2.4
fiber numbemn+ 1 hasL broken fibers, and the probability of 24 2 1.0
this is S(L;x). This gives the recursion relation 25 0 0.4
Pi{(n+1+L,L;x) P¢(n,L;X)
S(L;x)
M(x)—L

_ . : : is the probabilility, at force parametgr that among the first
= —(i+L+ . : . . ;
;0 Pr(n [ =(+L+2)X]S(L;x). (61) n fibers there is no fatal bursgiventhat there ard failed
fibers on the right-hand side. Then

The last factor is the probability that fiber numbe#-1,
which hasi +L failed neighbors, holds.

Insertion of the product fornP:(n,L;x)=t(x)"P:(L;Xx) Mp(L,A;x)dx (63
into Eq. (61) yields the following equations foP:(i;x): S(Lix)
is the probability that an increase of the force parameter from
M(x) X to X+ dx starts an avalanche of sizeand length_, so that
PiL;x)— 2, [1—(i+L+2)X]S(L;x)t(x) " 1P(i;X). afterwards there is no fatal burst among thébers on the
=0 left-hand side.
(62 Finally we want to determine the probability for a burst of

sizeA in a system oN fibers in a ring configuratiotFig. 1).
It is consistent to leP(0;x)=1. SinceL may take the val- On the left of a selected fibdrwe consider a region af
ues 0,1, ...M(x), Eq. (62 is a set ofM(x)+1 homoge- fibers, and on the right a region ®d—n—1 fibers. The
neous equations for th#(x)+1 quantitiesP¢(i;x). The probability that the force parameter increase-x+dx in-
system determinant of the equation set must vanish, and thifuces a burst of sizd4 and lengthL to the left off that
determinest(x) for a given force parametex. With  holds is given by Eq(63). Here A<L,;=<n, of course. On
P:(0;x)=1 all quantities can then be determined. The practhe right-hand side df a numbelr_, fibers adjacent th may
tical solution procedure is by iteration. have failed.(Here L, is less than the remaining number
From the definitions oP¢(n,L;x) andS(L;x) it follows =~ N—n—1 of fibers) The probability of such a configuration
that the ratio (with no fatal burstis P;(N—n—1.L,;x). We must also
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C. Size-dependent bundle strength

10 Let us now attempt to find a simple estimate for the maxi-
10 ] mal force per fiber that the fiber bundle can tolerate. In order
to do this, we assume that the fatal burst occurs in a region
where no fibers have previously failed so that the burst has
the same magnitude and length. We know that a single burst

D(A)

10 of lengthA=x"1—2 is fatal, Eq.(32), so our criterion is
simply
D(x 1-2)=1. (66)
0 I
10 1 10 If we take into account that the two fibers adjacent to the
A burst should hold, and ignore the rest of the bundle, the gap

distribution would be
FIG. 4. Burst distribution in local model as found numerically

for 4 000 000 samples witthN=20000 fibers ), and calculated

from Egs.(65) (O). The straight line shows the power lafv ®, Nle(A)Nf
and the broken curve the function exp§/Ag) with Aj=1.1. Note 0
the small value ofA,.

U(A+2)
[1—(2+A)X]%p(A,A;x)dx

2p(A,A)
= . 6
take into account that the fibéritself, with L, +L, failed A(A+1)(A+2)~A*1 (67
neighboring fibers, must hold, the probability of which is
[1—(Li+La+2)x]. With the abbreviation
When we take this together, sum over the possible values
of L4, L, andn, and integrate ovex, we obtain
n _P(A,4)
AT (A-1
N M(x) M(x)—Lq .
U(A+2) P¢(n,Lq;x)
D(A =f LA we have
a) 0 nzl lezA |_22=0 S(L1;X)
Xp(Ly,A;x)Pe(N=—n—1L,;%) 2(A+2)!
D(A)/IN~-= 2 i
X[1—=(L,+Ly+2)x]dx. (64) AS(A+1)9(A+2)
V8m(A+2) _, .,
Using the product property;(n,L;x)=t(x)NP¢(L;x) the :—AZ(A+1)2 Ra, (68)

sum overn simply yields a factoN, and we find

using Stirling’s formula.
Taking logarithms we have

D(4) fl/(H)M(X) M P
e

0 1120 =0 S(L1;%)

IND(A)—InN=—-(A+2)

. INR, Jro(lnA)
X p(Ly,A;x)Py(Ly;x)t(x)N 1 A+2 A

X[1—(Ly+Ly+2)x]dx. (65) =—(A+2), (69

using result(B9) of Appendix B forR, whenA is large.

This may now be evaluated. The results for a bundle of The failure criterion(66) then takes the form
N=20 000 are shown in Table Il, together with simulation
results for 4 000 000 bundles, each having 20 000 fibers. The
agreement between the simulation data and the theoretical
data is, as we see, extremely satisfactory.

An analysis of the burst distribution obtained for this local
model shows that the distribution does not follow a powerSincex=F/2N, we have the following estimate for the maxi-
law except for small values & (Fig. 4). If one nevertheless mum forceF that the fiber bundle can tolerate before com-
does a linear regression analysis on this part of the data sqilete failure:
the effective power would be of the order 5, considerably
larger than the “mean-field” valug for the global model
[11,12. This effective exponent increases with increasing F—ﬂ (70)

N [12]. InN*

1
INN=—.
X
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Due to the assumption that the fatal burst occurs in a region We now prove by induction that
with no previously failed fibers, the numerical prefactor is an
overestimate. The size dependence

h
Phn= 1- ﬁ (AZ)
N
Foci— (71 : o
In N Assume that this holds fapy, ,—4, all h. Insertion into the

) ] right-hand side of Eq(Al) gives
shows that the maximum load the fiber bundle can carry does

not increase proportionally to the number of fibers, but

slower. This is to be expected since the probability of finding A ENTE AL AL k

somewhere a stretch of weak fibers that start a fatal ava- ph,n:kZO kIl n n_ 1- n-1

lanche increases when the number of fibers increases. The

N/In N dependence agrees with a previous estimate by h h—1\/12\"" % n=1\%1? h

Zhang and Ding[20] and is also seen in the model with =1-—- (k—l)(_) (—) =1--,

thresholds zero or unitj10,9]. k=1 n n n
(A3)

IV. CONCLUDING REMARKS _ _ _ _ _
in accordance with Eq(A2). Since Eq.(A2) is valid for

In this paper we have discussed burst distributions in fibeh:2, the induction is Comp|ete_ For the app"cation in the
bundles with two different mechanisms for load distributiontext,
when fibers rupture, viz. global or extremely local load re-
distributions. The main results are the following.

(i) For the global model the burst distribution follows a 1
universal power lawA ~%72, Pn-1n=p

(i) Deviations from this power-law dependence may,
however, occur for exceptional distributions of fiber is needed.
strengths.

(iii) For the local model and for a uniform distribution of APPENDIX B
fiber thresholds we show that it is possible, although compli-
cated, to carry through a theoretical analysis of the burst In Sec. Ill C an estimate fop(n,n,) was needed. We
distribution. base it on the recursion relatiori§5), (57), and (59) for

(iv) A simulation study for a bundle of 20 000 fibers con- L=n+1, a=n:
firms convincingly the theoretical results.

(v) For the local model the burst distribution falls off with
increasing burst size much faster than for the global model, p(n+1n+1)=pg(n+1n), (B1)
and does not follow a power law.

(vi) The expected maximum load that a bundle with glo-
bal redistribution mechanism can tolerate increases propor-
tional to the numbeN of fibers, and proportional td/InN
for the local redistribution mechanism.

ps(n+2n+1)=(n+2)ps(n+1,n)+p(n+2,n),
(B2)

po(n+3n+1)=(n+1)pg(n+21n)+(n+1)ps(n+2n).
APPENDIX A (BS)

The combinatorial problem in Sec. Il A can be formulated\ye have used thap,(n+1,a) and p,(n+2,a) vanish for
more generally as follows: Let;, , be the probability thatby 5~ s

distributing h nonidentical particles among numbered It is easy to eliminate, by Eq.(B1), andp, by Eq.(B2),
boxes, box number 1 will contain no particles, box number 2yith the result

will contain at most 1 particle, and in general box number

will contain at mosti —1 particles.

Since the probability that there ahe-k particles in box p(n+1,n+1)=2np(n,n)—(n—1)?p(n—1n—1).
numbern is equal to (B4)
ek ‘ This is a three-term recursion starting off wjtl1,1)=2 and
(h) (E) (E) p(2,2)=2p(1,1) by Eq.(B4).
k/ \n n /'’ With
we must have
p(n,n)

T T

n n the recursion takes the form
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1
Ry11=2R,—| 1— - Ry_1. (B6)
Introducing the generating function
G(2)= 2 RZ", (B7)
n=1

the recursion(B6) may be transformed to the differential

equation

J 2/ —
5 [G@(1-2)/2]=G(2),

2625

with solution

2z
G(2)= Eez/<1-z). (B8)

Thus the radius of convergence of the power sefi®8 is

unity, and therefore

lim R¥"=1,

n—o

(B9)

In fact R,ocn~Y4e2™ for largen [21].
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