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Burst avalanches in solvable models of fibrous materials

M. Kloster, A. Hansen, and P. C. Hemmer
Institutt for Fysikk, Norges Teknisk-Naturvitenskapelige Universitet, N–7034 Trondheim, Norway

~Received 18 March 1997!

We review limiting models for fracture in bundles of fibers, with statistically distributed thresholds for
breakdown of individual fibers. During the breakdown process, avalanches consisting of simultaneous rupture
of several fibers occur, and the distributionD(D) of the magnitudeD of such avalanches is the central
characteristic in our analysis. For a bundle of parallel fibers two limiting models of load sharing are studied and
contrasted: theglobal model, in which the load carried by a bursting fiber is equally distributed among the
surviving members; and thelocal model, in which the nearest surviving neighbors take up the load. For the
global model we investigate in particular the conditions on the threshold distribution which would lead to
anomalous behavior, i.e., deviations from the asymptoticsD(D);D25/2, known to be the generic behavior. For
the local model no universal power-law asymptotics exists, but we show for a particular threshold distribution
how the avalanche distribution can nevertheless be explicitly calculated in the large-bundle limit.
@S1063-651X~97!02009-6#

PACS number~s!: 02.50.2r, 05.90.1m, 81.40.Np
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I. INTRODUCTION

When a weak structural element in a material with s
chastically distributed strengths fails, the increased load
the remaining elements may cause further ruptures, and
induce a burst avalanche of a certain sizeD, i.e., one in
which D elements fail simultaneously. When the load is fu
ther increased, new avalanches occur. The distribution
avalanche sizes, either at a fixed load, or the cumulative
tribution from zero load until complete breakdown of th
material, depends on several factors, in particular the thr
old strength distribution and the mechanism for load shar
between the elements.

Due to the complex interplay of failures and redistrib
tions of local stresses, few analytical results are availabl
this field; computer simulations are commonly applied
see Herrmann and Roux@1# for a review. However, firm
analytical results, albeit on simplified models, are import
in order to develop a deeper understanding of universal p
erties and general trends. In the present paper we there
review and study burst events in models of fibrous mater
that are sufficiently simple to allow theoretical treatment.

The models we consider are bundles ofN parallel fibers,
clamped at both ends, and stretched by a forceF ~Fig. 1!.
The individual fibers in the bundle are assumed to h
strength thresholdsf i , i 51,2, . . . ,N, which are independen
random variables with the same cumulative distribut
function P( f ) and corresponding density functionp( f ):

Prob~ f i, f !5P~ f !5E
0

f

p~u!du. ~1!

Whenever a fiber experiences a force equal to or greater
its strength threshold, it breaks immediately and does
contribute to the strength of the bundle thereafter. The m
els differ, apart from differences in the threshold distributio
in how stress is redistributed on the surviving fibers whe
fiber fails. A central quantity to be studied in the following
561063-651X/97/56~3!/2615~11!/$10.00
-
n
us

-
of
s-

h-
g

in

t
p-
re

ls

e

an
ot
d-
,
a

the expected numberD(D,N) of bursts of sizeD when the
fiber bundle is stretched until complete breakdown.

The model of this kind with the longest history@2# is one
in which it is assumed that the fibers obey Hookean elasti
right up to the breaking point, and that the load distribu
itself equally among the surviving fibers. The model wi

FIG. 1. A fiber bundle with periodic boundary conditions. Th
externally applied forceF is the control parameter.
2615 © 1997 The American Physical Society
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this democratic load redistribution is similar to mean-fie
models in statistical physics, and is called here theglobal
model. For largeN, Daniels @3# was able to determine th
asymptotic distribution for the bundle strength, a result t
has been refined later@4–6#. The distribution of burst ava
lanches was first studied by Hemmer and Hansen@7#. Their
main result was that for a large class of threshold distri
tions P( f ) the bursts were distributed according to
asymptotic power law,

lim
N→`

D~D!

N
.

C

Dj
, ~2!

with a universal exponent

j5
5

2
. ~3!

In Sec. II we show that for special threshold distributions
power law~2! is not obeyed.

The assumption of global load sharing among surviv
fibers is often unrealistic, and it is natural to consider mod
in which the extra stresses by a fiber rupture are taken u
the fibers in the immediate vicinity. The extreme version
to assume that only thenearest-neighborsurviving fibers
take part in the load-sharing. In a one-dimensional geome
as in Fig. 1, precisely two fibers, one on each side, share
extra stress. When the strength thresholds take only two
ues, the bundle strength distribution has been found ana
cally @8–10#. One interesting result is that the average bun
strength has a logarithmic size effect. The distribution
burst avalanches for such models with local load sharing
not yet been determined, but simulations@11,12# show that
this model isnot in the same universality class as the glob
model. The challenge to determine the burst distribution
other means than simulations remains, and that this is
sible, at least in a special case~Sec. III!, is one of the main
results of the present paper.

II. GLOBAL MODEL

In the global model the total force on a fiber bundle
distributed evenly on the surviving fibers. At a forcef per
surviving fiber, the total force on the bundle is

F~ f !5N f@12f~ f !#, ~4!

wheref( f ) is the fraction of failed fibers. In Fig. 2 we sho
an example of aF vs f . We have in mind an experiment i
which the forceF, our control parameter~Fig. 1!, is steadily
increasing. This implies that not all parts of theF( f ) curve
are physically realized. The experimentally relevant funct
is

Fph~ f !5LMF F~ f !, ~5!

the least monotonic function~LMF! not less thanF( f ). A
horizontal part ofFph( f ) corresponds to an avalanche, t
size of which is characterized by the number of maxima
F( f ) within the corresponding range off .
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It is the fluctuations inF( f ) that create avalanches. For
large sample the fluctuations will be small deviations fro
the average macroscopic characteristics^F&. This average
total force is given by

^F&~ f !5N f@12P~ f !#. ~6!

Let us for the moment assume that^F&( f ) has a single maxi-
mum. This maximum corresponds then to the valuef 5 f c for
which d^F&/d f vanishes. This gives

12P~ f c!2 f cp~ f c!50. ~7!

In Ref. @7# the burst distribution was derived using th
fiber elongationx as the independent variable, under the
sumption that Hooke’s law holds up to the threshold
breaking. Here, however, we formulate everything in ter
of the force per fiber,f , and simplify the derivation by using
directly the fact that the thresholds in a small interval off are
Poisson distributed.

A. Burst distribution

Let us consider a small force-per-fiber interv
( f , f 1d f) in a range where the average force^F&( f ) in-
creases withf . For a large numberN of fibers the expected
number of surviving fibers isN@12P( f )#. The thresholds in
the interval, of which there areNp( f )d f , will be Poisson
distributed. WhenN is arbitrarily large, the burst sizes can b
arbitrary large in any finite interval off .

Assume that an infinitesimal increase in the external fo
results in a break of a fiber with thresholdf . Then the load
that this fiber suffered, will be redistributed on th
N@12P( f )# remaining fibers; thus they experience a lo
increase

d f 5
f

N@12P~ f !#
. ~8!

The averagenumber of fibers that break as a result of th
load increase is

FIG. 2. The solid curve indicates the total forceF( f ) as a func-
tion of f — the force per surviving fiber, Eq.~4!. However, when
our control parameter isF rather thanf , the system will follow the
broken line,Fph5LMF F( f ), defined in Eq.~5!. The avalanches
are the horizontal parts ofFph( f ). HereN5100.
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a5a~ f !5Np~ f !d f 5
f p~ f !

12P~ f !
. ~9!

For a burst of sizeD the increase in load per fiber will b
a factorD larger than the quantity~8!, and an average num
ber a( f )D will break. The probability that preciselyD21
fibers break as a consequence of the first failure is given
Poisson distribution with this average, i.e., it equals

~aD!D21

~D21!!
e2aD. ~10!

This is not sufficient, however. We must ensure that
thresholds for theseD21 fibers are not so high that th
avalanche stops before reaching sizeD. This requires that a
leastn of the thresholds are in the interval (f , f 1nd f ), for
1<n<D21. In other words, if we consider theD intervals
( f , f 1d f ), ( f 1d f , f 12d f ), . . . , „f 1(D21)d, f 1Dd f …,
we must find at mostn21 thresholds in then last intervals.
There is the samea priori probability to find a threshold in
any interval. The solution to this combinatorial problem
given in Appendix A. The resulting probability to find a
intermediate thresholds weak enough equals 1/D. Combining
this with Eq.~10!, we have, for the probabilityf(D, f ) that
the breaking of the first fiber results in a burst of sizeD,

f~D, f !5
DD21

D!
a~ f !D21e2a~ f !D. ~11!

This gives the probability of a burst of sizeD, as a con-
sequence of a fiber burst due to an infinitesimal increas
the external load. However, we still have to ensure that
burst actuallystartswith the fiber in question and is not pa
of a larger avalanche starting with another, weaker, fiber.
us determine the probabilityPb( f ) that this initial condition
is fulfilled.

For that purpose consider thed21 fibers with the larges
thresholds belowf . If there is no strength threshold in th
interval (f 2d f , f ), at most one threshold value in the inte
val ( f 22d f , f ), . . . , and atmostd21 values in the interva
( f 2dd f , f ), then the fiber bundle cannot, at any of the
previousf values, withstand the external load that forces
fiber with thresholdf to break. The probability that there ar
preciselyh fiber thresholds in the interval (f 2d f d, f ) equals

~ad!h

h!
e2ad.

Dividing the interval intod subintervals each of lengthd f ,
the probabilityph,d that these conditions are fulfilled is ex
actly given by the solution of the combinatorial problem
Appendix A: ph,d512h/d. Summing over the possible va
ues ofh, we obtain the probability that the avalanche can
have started with the failure of a fiber with any of thed
nearest-neighbor threshold values belowf :

Pb~ f ud!5 (
h50

d21
~ad!h

h!
e2adS 12

h

dD
a

e

in
e

et

e

t

5~12a!e2ad(
h50

d21
~ad!h

h!
1

~ad!d

d!
e2ad. ~12!

Finally we take the limitd→`, for which the last term van-
ishes. Fora.1 the sum must vanish since the left-hand s
of Eq. ~12! is non-negative, while the factor (12a) is nega-
tive. Fora,1, on the other hand, we find

Pb~ f !5 lim
d→`

Pb~ f ud!512a, ~13!

where a5a( f ). The physical explanation of the differen
behavior fora.1 anda<1 is straightforward: The maxi-
mum of the total force on the bundle occurs atf c for which
a( f c)51 @see Eqs.~7! and~9!#, so thata( f ).1 corresponds
to f values almost certainly involved in the final catastrop
cal burst. The region of interest for us is therefore wh
a( f )<1, where avalanches on a microscopic scale oc
This is in accordance with what we found in the beginning
this section, viz. that the burst of a fiber with thresholdf
leads immediately to an average numbera( f ) of additional
failures.

Summing up, we obtain the probability that the fiber wi
thresholdf is the first fiber in an avalanche of sizeD as the
product

F~ f !5f~D, f !Pb~ f !5
DD21

D!
a~ f !D21e2a~ f !D@12a~ f !#,

~14!

wherea( f ) is given by Eq.~9!,

a~ f !5
f p~ f !

12P~ f !
.

Since the number of fibers with threshold in (f , f 1d f ) is
Np( f )d f , the burst distribution is given by

D~D!

N
5

1

NE0

f c
F~ f !p~ f !d f

5
DD21

D! E
0

f c
a~ f !D21e2a~ f !D@12a~ f !#p~ f !d f .

~15!

For large D the maximum contribution to the integra
comes from the neighborhood of the upper integration lim
since a( f )e2a( f ) is maximal for a( f )51, i.e., for f 5 f c .
Expansion around the saddle point and integration yields
asymptotic behavior

D~D!/N}D25/2, ~16!

universal for those threshold distributions for which the a
sumption of a single maximum of^F&( f ) is valid.

Note that if the experiment had been stopped before c
plete breakdown, at a force per fiberf m, f c , the asymptotic
behavior would have beenexponentialrather than a power
law:

D~D!/N}D25/2e2[a~ f m!212 lna~ f m!]D. ~17!
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In the form

D~D!}D2he2D/D0 with D0}~ f c2 f !2n, ~18!

the breakdown process is similar to a critical phenom
with a critical point at total breakdown@13#. The distribution
follows a power law with indexh5 5

2 with a cutoff that di-
verges at total failure with an indexn5 1

2.
What happens when the average strength^F&( f ) curve

does not have a unique maximum? If it has several parab
maxima, and the absolute maximum does not come first~i.e.,
at the lowestf value!, then there will be several avalanch
of macroscopic size in the sense that a finite fraction of thN
fibers break simultaneously@14#. The asymptotics~16! is
thereby unaffected, however. We turn next to threshold
tributions that are more interesting because they lead to
ferent asymptotics.

B. Strong threshold distributions

Rather than consider bundle strength functions^F&( f )
with several parabolic maxima, we study now cases in wh
there is no such maximum. We are particularly interested
the asymptotics of the burst distributions.

Model examples of such threshold distributions are

P~ f !5H 0 for f < f 0

12@11~ f 2 f 0!/ f r #
2a for f . f 0 .

~19!

Herea and f 0 are positive parameters, andf r is a reference
quantity which for simplicity we set equal to unity in th
following. These distributions are all characterized by
verging moments. Whena<1, even the first moment — th
mean — as well as all other moments diverge. This clas
threshold distributions are rich enough to exhibit seve
qualitatively different avalanche distributions.

The corresponding macroscopic bundle strength per fi
is, according to Eq.~6!,

^F&~ f !

N
5H f for f < f 0

f

~11 f 2 f 0!a
for f . f 0 .

~20!

In Fig. 3 some threshold distributionsp( f ) and the corre-
sponding macroscopic force curves^F&( f ) are sketched. We
note that whena→1, the plateau in Eq.~20! becomes infi-
nitely wide.

The distribution of avalanche sizes is given by Eq.~15!.
In the present case the functiona( f ) takes the form

a~ f !5
f p~ f !

12P~x!
5

a f

11 f 2 f 0
. ~21!

A simple special case isf 051, corresponding to

p~ f !5a f 2a21 for f >1,

since then function~21! is independent off :

a~ f !5a.

This at once gives
a

lic

-
if-

h
in

-

of
l

er

D~D!

N
5

12a

a

DD21

D!
@ae2a#D.

12a

aA2p
D23/2@ae12a#D.

~22!

In other cases it is advantageous to change integra
variable in Eq.~15! from f to a:

D~D!

N
5

DD21

eDD!

1

aa21~12 f 0!aEa f 0

a

~a2a!a21

3~12a!a21~ae12a!Dda. ~23!

The asymptotics for largeD, beyond theD23/2 dependence
of the prefactor, is determined by theD-dependent factor in
the integrand. The maximum ofae12a is unity, obtained for
a51, and the asymptotics depends crucially on whet
a51 falls outside the range of integration, or inside~includ-
ing the border!. If the maximum falls inside the range o
integration theD(D)}D25/2 dependence remains. A speci
case of this isa51, for which the maximum of the integran
is located at the integration limit and the macroscopic fo
has a ‘‘quadratic’’ maximumat infinity.

Another special case isa f 051 ~and a,1), for which
again the standard asymptoticsD25/2 is valid. In this instance
the macroscopic force has a quadraticminimumat f 5 f 0 ~see

Fig. 3 for a5 1
2 ), and critical behavior arises just as we

from a minimum as from a maximum.
In the remaining cases, in whicha51 is not within the

range of integration in Eq.~23!, the avalanche distribution is
always a power law with an exponential cutoff,

D~D!

N
.D2jAD. ~24!

Here, however,j andA depend on the parameter valuesf 0
anda. This is easy to understand. Since

da~ f !

d f
5

a~12 f 0!

~11 f 2 f 0!2
, ~25!

FIG. 3. The threshold distribution densityp( f ) and the macro-
scopic bundle strengtĥF&( f ) for distribution ~17!, with f 052 f r ,
and fora5

1
3 ~upper curve!, 1

2 ~middle curve!, and 2
3 ~lower curve!.

The broken part of thea52/3-curve is unstable and the macr
scopic bundle strength will follow the solid line.
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we see thata( f ) is a monotonically decreasing function fo
f 0.1, so that the maximum ofae12a is obtained at the
lower limit f 5 f 0, wherea5a f 0. The asymptotics

D~D!}D25/2~a f 0e12a f 0!D ~26!

follows.
This is true merely fora f 0,1, however. Fora f 0.1 the

macroscopic forcê F&( f ) decreasesnear f 5 f 0, so that a
macroscopic burst takes place at a forcef 0 per fiber, and
stabilization is obtained at a larger forcef 1 ~Fig. 3!. The
subsequent bursts have an asymptotics

D~D!}D25/2
„a~ f 1!e12a~ f 1!

…

D ~27!

determined by the neighborhood off 5 f 1.
For f 0,1, the maximum ofae12a is obtained atf 5`,

leading to the asymptotics

D~D!}D2~3/2!2a~ae12a!D, ~28!

reflecting the power-law behavior of the integrand at infini
The results are summarized in Table I. Note that

f 051 result~22! cannot be obtained by puttingf 051 in Eq.
~26!, since in Eq.~23! the order of the limitsD→` and
f 0→1 is crucial.

III. LOCAL MODEL

The assumption of global load sharing among surviv
fibers is often unrealistic, since fibers in the neighborhood
the failed fiber are expected to take most of the load incre
The extreme form for local load redistribution is that all e
tra stresses caused by a fiber failure are taken up by
nearest-neighborsurviving fibers.

The simplest geometry is one-dimensional so that theN
fibers are ordered linearly, without or with periodic bounda
conditions~Fig. 1!. In this case precisely two fibers, one o
each side, take up, and divide equally, the extra stress.
total forceF tot on the bundle the force on a fiber surround
by nl previously failed fibers on the left-hand side, andnr on
the right-hand side, is then

F tot

N
X11

1

2
~nl1nr !C5x~21nl1nr !. ~29!

Here

x5
F tot

2N
, ~30!

TABLE I. Asymptotic behavior of the burst distribution fo
strong threshold distributions in the global model.

Parameters Asymptotics

0< f 0,1,a,1 D2(3/2)2a(ae12a)D

0< f 0,1,a51 D25/2

f 051,a,1 D23/2(ae12a)D

1, f 0,a21 D25/2(a f 0e12a f 0)D

1, f 05a21 D25/2

1,a21, f 0 D25/2e2D/D0
.
e

g
f
e.

he

a

one-half the force-per-fiber, is a convenient variable to use
the driving force parameter. This model has been discusse
previously@8–10,15–17# for a different purpose. Preliminary
studies@11,12# of the avalanche distribution for some thres
old strength distributions have not yielded analytical resu
but simulation results that show convincingly that the loc
model is not in the same univerality class as the glob
model.

In order to obtain explicit results we assume for the fib
strengths the simplest possible case, auniform threshold dis-
tribution. In units of the maximum threshold,

P~ f !5H f for 0< f ,1

1 for f >1.
~31!

Avalanches in the local and the global models have d
ferent characters. In the local model an avalanche unroll w
one failure acting as the seed. If many neighboring fib
have failed, the load on the fibers on each side is high, an
they burst the load on the new neighbors will be even high
etc. In this way a weak region in the bundle may be resp
sible for the failure of the whole bundle. For a large numb
N of fibers the probability of a weak region somewhere
high, and this explains in a qualitative way that the ma
mum load the bundle are able to carry does not incre
proportional toN, but slower than linear.

The load distribution rule~29! implies that an avalanche
of sizeD does necessarily lead to a complete breakdown
the whole bundle if the external force is too high, i.e., ifx
exceeds a critical valuexmax. Since here a fiber can at mo
take a load of unity, we have

xmax5
1

D12
. ~32!

The strategy of the derivation is to first establish a set
recursion relations between quantities that give probabili
of certain configurations at fixed external force, i.e., at fix
x. Below ~Sec. III B!, we connect this with the size distribu
tion of avalanches for allx up to the critical valuexmax.

A. Recursion relations

We will use the terminology that themagnitudeof an
avalanche is the number of failing fibers in the avalanc
and thelength of an avalanche is the number of fibers b
tween the nearest surviving fibers on each side of the a
lanche. The length can be larger than the magnitude sinc
may include fibers that have failed in previous avalanche

We defineS( l ;x), thegap probability, to be the probabil-
ity ~at given force parameterx) that in a selected region o
l consecutive fibers all fibers have failed, assuming the
fibers on each side to be intact. We letS(0;x)51 by defini-
tion.

Another central quantity is the probability densi
p( l ,a;x). We define it by selecting a region ofl consecutive
fibers, and letp( l ,a;x)dx be the probability that a force
increase fromx to x1dx leads to an avalanche of this leng
l and of magnitudea.

The state at force parameterx that allL fibers have failed
must have appeared for some force parameter in the ra
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(0,x), and by a burst of some magnitudea in the range
(1,L). Thus

S~L;x!5 (
a51

L E
0

x

p~L,a;y!dy. ~33!

Let us now obtain expressions for the probability dens
p(L,a;x), first for the special case that the magnitudea is
unity. Just one fiber fails in this burst, and in an avalanche
length L thereforeL21 of the neighboring fibers must a
ready have failed. By Eq.~29!, the force on the fiber jus
before it fails is (L11)x, and for the uniform distribution
the probability that it fails due to a force parameter incre
dx is just (L11)dx. The probability of the burst of magni
tude 1 to occur whenx→x1dx is this probability of failure
of the single remaining fiber, (L11)dx, times the probabil-
ity that theL21 neighbors have already failed. The latter
given by the appropriate gap probabilities. Since the posi
of the failing fiber is arbitrary in the interval, we have

p~L,1;x!dx5 (
i 50

L21

S~L2 i 21;x!~L11!dxS~ i ;x!. ~34!

We next consider expressions for the probabil
p(L,a;x) with an internal avalanche of magnitudea larger
than unity. For that purpose we introduce two new qua
ties: Letpl(L11,a;x)dx be the probability that a fiber fails
because a force parameter increasex→x1dx starts, on its
right-hand side, an avalanche of magnitudea ~not counting
the ultimate fiber on the left-hand side! and of lengthL.
Similarly pr(L11,a;x)dx is the probability that a fiber fails
because the force parameter increasex→x1dx starts, on its
left-hand side, an avalanche of magnitudea and of length
L.

Consider the event described byp(L,a;x), and let the last
of the a fibers that fail be fiberF. The force distribution
mechanism in the local model implies thatF is either the
leftmost or the rightmost of thea fibers. The first possibility
implies that the increasex→x1dx induces the first failure to
the right of F, which starts an avalanche of magnitu
a21 and length i , say, to the right of F. Here
a21< i<L21, of course, andF must haveL2 i 21 previ-
ously failed fibers on its left-hand side.

Including all possibilities, we have

p~L,a;x!5 (
i 5a21

L21

@S~L2 i 21;x!pl~ i 11,a21;x!

1pr~ i 11,a21;x!S~L2 i 21;x!#, ~35!

where the second term represents events in which the
failure occurs to theleft of F.

On the other hand we want to expresspl( l 11,a;x) and
pr( l 11,a;x) in terms of previously defined quantities. F
magnitudea51 this is relatively simple. Let the single fibe
~call it G) that starts the process haven already failed fibers
to the right and l 2n21 fibers to the left, with
0<n< l 21. The probability that fiberG fails under the load
increasex→x1dx is (l 11)dx for the uniform threshold
distribution. Since the failure of fiberG causes a load in
y

f

e

n

i-

rst

crease (n11)x on the left fiber, the probability of its failure
is (n11)x. When all possible positions ofG are taken into
account, we have

pl~ l 11,1;x!dx5 (
n50

l 21

S~ l 2n21;x!~ l 11!dx

3S~n;x!~n11!x. ~36!

Similarly,

pr~ l 11,1;x!5 (
n50

l 21

S~ l 2n21;x!~ l 11!S~n;x!~ l 2n!x

5pl~ l 11,1;x!. ~37!

The corresponding expressions forpr(L11,a;x) and
pl(L11,a;x), with a larger than unity, are more compli
cated. The internal avalanche started byx→x1dx proceeds
so that the final failure is either the leftmost or the rightmo
of the a fibers, or both. If both go simultaneously, we ma
the arbitrary definition that in such a case the right-ha
neighbor fails first. This secures a unique sequential orde
of failures.

Consider firstpr(L11,a11;x), and denote the last sur
viving fiber on the right-hand side asF. Assume first that the
rightmost of thea internal fibers fails last, and let this fibe
have i fibers on its left-hand side andL2 i 21 failed fibers
on the right-hand side. The probability that this right-ha
side fiber fails underx→x1dx with an internal avalanche o
magnitudea and lengthi is just pr( i 11,a;x)dx, and the
probability of findingL2 i 21 failed fibers on the right-hand
side is given by the gap probabilityS(L2 i 21;x). After the
rightmost internal fiber has failed the load increase on
F is (i 11)x, which also equals its probability of failure. Th
other alternative is that the leftmost of thea internal fibers
fails last, with, say,i fibers on its right-hand side, an
L2 i 21 failed fibers on its left. Then the extra load increa
onF, and hence its probability of failure, is (L2 i )x. Includ-
ing all possible positionsi we end up with

pr~L11,a11;x!5 (
i 50

L21

S~L2 i 21;x!@pr~ i 11,a;x!~ i 11!x

1pl~ i 11,a;x!~L2 i !x#. ~38!

By a similar argument the corresponding expression
pl(L11,a11;x) is built up. However, when in this case th
rightmost of the internal fibers fails last we must add t
probability that the leftmost and the rightmost fibers are
multaneously overburdened. Lettingp2( i 12,a;x)dx be the
probability that an avalanche of lengthi and sizea makes
both neighbor fibers fail, we have

pl~L11,a11;x!5 (
i 50

L21

S~L2 i 21;x!@pl~ i 11,a;x!~ i 11!x

1pr~ i 11,a;x!~L2 i !x1p2~ i 12,a;x!#.

~39!
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Finally, the recursion relations forp2 close the set. One
sees easily that when the failure of the two end fibers
caused by a single internal fiber burst due to the force
crease fromx to x1dx, we have

p2~L12,1;x!5 (
i 50

L21

S~L2 i 21;x!~L11!

3S~ i ;x!~ i 11!x~L2 i !x. ~40!

Here (L11)dx is the probability that the single fiber fails
( i 11)x is the probability that the (i 11) new failures on the
right makes the left-hand-side fiber break, while (L2 i )x is
the probability that the (L2 i ) new failures on the left make
the right-hand-side fiber break.

When the failure of the two end fibers are caused by
internal avalanche involvinga.1 fibers we may argue alon
the same lines as forpl , with the result

p2~L12,a11;x!

5 (
i 50

L21

S~L2 i 21;x!@pl~ i 11,a;x!~ i 11!x~L2 i !x

1„pr~ i 11,a;x!~L2 i !x1p2~ i 12,a;x!…~ i 11!x#.

~41!

We can simplify the set of equations somewhat by int
ducing the sumps5pl1pr , with the results

S~L;x!5 (
a51

L E
0

x

p~L,a;y!dy, ~42!

p~L,1;x!5 (
i 50

L21

S~L2 i 21;x!~L11!S~ i ;x!, ~43!

p~L,a11;x!5 (
i 50

L21

S~L2 i 21;x!ps~ i 11,a;x!, ~44!

ps~L11,1;x!5 (
i 50

L21

S~L2 i 21;x!~L11!S~ i ;x!~L11!x,

~45!

ps~L11,a11;x!5 (
i 50

L21

S~L2 i 21;x!@ps~ i 11,a;x!

1p2~ i 12,a;x!# ~46!

p2~L12,1;x!5 (
i 50

L21

S~L2 i 21;x!~L11!S~ i ;x!

3~ i 11!x~L2 i !x, ~47!
is
-

n

-

p2~L12,a11;x!5 (
i 50

L21

S~L2 i 21;x!~ i 11!x@ps~ i 11,a;x!

3~L2 i !x1p2~ i 12,a;x!#. ~48!

Starting withS(0;x)51, one easily proves by inductio
the following x dependence of all quantities involved@18#:

S~L;x!5S~L !xL, ~49!

p~L,a;x!5p~L,a!xL21, ~50!

ps~L11,a;x!5ps~L11,a!xL, ~51!

pD~L12,a;x!5pD~L12,a!xL11. ~52!

In x-independent form the recursion relations then ta
the form ~with a.0)

S~L !5L21(
a51

L

p~L,a!, ~53!

p~L,1!5 (
i 50

L21

S~L2 i 21!~L11!S~ i !, ~54!

p~L,a11!5 (
i 50

L21

S~L2 i 21!ps~ i 11,a!, ~55!

ps~L11,1!5 (
i 50

L21

S~L2 i 21!~L11!S~ i !~L11!, ~56!

ps~L11,a11!5 (
i 50

L21

S~L2 i 21!@ps~ i 11,a!1p2~ i 12,a!#,

~57!

p2~L12,1!5 (
i 50

L21

S~L2 i 21!~L11!S~ i !~ i 11!~L2 i !,

~58!

p2~L12,a11!5 (
i 50

L21

S~L2 i 21!~ i 11!@ps~ i 11,a!~L2 i !

1p2~ i 12,a!#. ~59!

Let us finally note that the feature of the uniform dist
bution that makes the derivation simpler than for other d
tributions is that the probability for failure of a fiber is give
by the load increase,independentof the actual load level.

We can now calculate recursivelyS(L;x) and p(L,a;x)
for integerL anda. By Eqs.~49!–~52! the x dependence is
trivial.
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B. Asymptotic burst distribution

In order to use the quantitative information obtain
above we must first determine the survival probabil
Ps(N,x) that a fiber bundle is able to tolerate a force p
fiber equal to 2x. Noting that in this model avalanches a
local phenomena, and that two failed fibers are only co
lated when all fibers in between have failed, the survi
probability Ps(N,x) is expected to dependexponentiallyon
the lengthN for largeN, so that

lim
N→`

N21lnPs~N,x!52t~x! ~60!

is finite. The exponential form of the survival probability
discussed and confirmed in other studies@15,17,19#.

We assume periodic boundary conditions, and number
fibers from an arbitrary starting point. We defin
Pf(n,L;x) to be the probability, at force parameterx, that
among then first fibers there is no fatal burst, and that t
last L fibers of these have all failed. Fiber numbern11 is
assumed to hold. We will now establish a recursion relat
between thePf(n,L;x).

Consider a region ofn111L fibers in which no fatal
burst has occurred, and where the lastL fibers have failed.
The probability of this configuration isPf(n111L,L;x). In
the region to the left of fiber numbern11, let the length of
the region of broken fibers that contain fiber numbern be
i , wherei may take all values between zero~if fiber number
n is intact! andM (x)5@x2122#. The region to the right of
fiber numbern11 hasL broken fibers, and the probability o
this is S(L;x). This gives the recursion relation

Pf~n111L,L;x!

5 (
i 50

M ~x!2L

Pf~n,i ;x!@12~ i 1L12!x#S~L;x!. ~61!

The last factor is the probability that fiber numbern11,
which hasi 1L failed neighbors, holds.

Insertion of the product formPf(n,L;x).t(x)nPf(L;x)
into Eq. ~61! yields the following equations forPf( i ;x):

Pf~L;x!2 (
i 50

M ~x!

@12~ i 1L12!x#S~L;x!t~x!2L21Pf~ i ;x!.

~62!

It is consistent to letPf(0;x)51. SinceL may take the val-
ues 0,1, . . . ,M (x), Eq. ~62! is a set ofM (x)11 homoge-
neous equations for theM (x)11 quantitiesPf( i ;x). The
system determinant of the equation set must vanish, and
determines t(x) for a given force parameterx. With
Pf(0;x)51 all quantities can then be determined. The pr
tical solution procedure is by iteration.

From the definitions ofPf(n,L;x) andS(L;x) it follows
that the ratio
r

-
l

e

n

is

-

Pf~n,L;x!

S~L;x!

is the probabilility, at force parameterx, that among the first
n fibers there is no fatal burst,given that there areL failed
fibers on the right-hand side. Then

Pf~n,L;x!

S~L;x!
p~L,D;x!dx ~63!

is the probability that an increase of the force parameter fr
x to x1dx starts an avalanche of sizeD and lengthL, so that
afterwards there is no fatal burst among then fibers on the
left-hand side.

Finally we want to determine the probability for a burst
sizeD in a system ofN fibers in a ring configuration~Fig. 1!.
On the left of a selected fiberf we consider a region ofn
fibers, and on the right a region ofN2n21 fibers. The
probability that the force parameter increasex→x1dx in-
duces a burst of sizeD and lengthL1 to the left of f that
holds is given by Eq.~63!. Here D,L1<n, of course. On
the right-hand side off a numberL2 fibers adjacent tof may
have failed.~Here L2 is less than the remaining numbe
N2n21 of fibers.! The probability of such a configuratio
~with no fatal burst! is Pf(N2n21,L2 ;x). We must also

TABLE II. The burst distributionD(D) for the local model with
a bundle ofN520 000 fibers. The simulation results are based
4 000 000 samples. The calculated values are based on Eq.~65!,
and have been multiplied by 4 000 000.

D Simulation Calculation

1 8 327 378 752 8 327 331 808
2 491 305 573 491 331 178
3 72 126 803 72 114 644
4 17 179 080 17 180 414
5 5 590 887 5 591 243
6 2 243 916 2 243 012
7 1 030 833 1 031 678
8 515 309 515 310
9 268 589 268 139
10 140 911 140 751
11 72 251 72 701
12 36 525 36 277
13 17 523 17 285
14 8015 7835
15 3352 3392
16 1442 1418
17 559 579
18 223 233
19 90 93.8
20 40 37.5
21 18 15.0
22 10 6.0
23 1 2.4
24 2 1.0
25 0 0.4
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56 2623BURST AVALANCHES IN SOLVABLE MODELS OF . . .
take into account that the fiberf itself, with L11L2 failed
neighboring fibers, must hold, the probability of which
@12(L11L212)x#.

When we take this together, sum over the possible va
of L1, L2 andn, and integrate overx, we obtain

D~D!5E
0

1/~D12!

(
n51

N

(
L15D

M ~x!

(
L250

M ~x!2L1 Pf~n,L1 ;x!

S~L1 ;x!

3p~L1 ,D;x!Pf~N2n21,L2 ;x!

3@12~L11L212!x#dx. ~64!

Using the product propertyPf(n,L;x).t(x)NPf(L;x) the
sum overn simply yields a factorN, and we find

D~D!

N
5E

0

1/~D12!

(
L150

M ~x!

(
L250

M ~x!2L1 Pf~L1 ;x!

S~L1 ;x!

3p~L1 ,D;x!Pf~L2 ;x!t~x!N21

3@12~L11L212!x#dx. ~65!

This may now be evaluated. The results for a bundle
N520 000 are shown in Table II, together with simulatio
results for 4 000 000 bundles, each having 20 000 fibers.
agreement between the simulation data and the theore
data is, as we see, extremely satisfactory.

An analysis of the burst distribution obtained for this loc
model shows that the distribution does not follow a pow
law except for small values ofD ~Fig. 4!. If one nevertheless
does a linear regression analysis on this part of the data
the effective power would be of the order 5, considera
larger than the ‘‘mean-field’’ value52 for the global model
@11,12#. This effective exponent increases with increas
N @12#.

FIG. 4. Burst distribution in local model as found numerica
for 4 000 000 samples withN520000 fibers (1), and calculated
from Eqs.~65! (s). The straight line shows the power lawD25,
and the broken curve the function exp(2D/D0) with D051.1. Note
the small value ofD0.
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C. Size-dependent bundle strength

Let us now attempt to find a simple estimate for the ma
mal force per fiber that the fiber bundle can tolerate. In or
to do this, we assume that the fatal burst occurs in a reg
where no fibers have previously failed so that the burst
the same magnitude and length. We know that a single b
of length D5x2122 is fatal, Eq.~32!, so our criterion is
simply

D~x2122!51. ~66!

If we take into account that the two fibers adjacent to
burst should hold, and ignore the rest of the bundle, the
distribution would be

N21D~D!'E
0

1/~D12!

@12~21D!x#2p~D,D;x!dx

5
2p~D,D!

D~D11!~D12!D11
. ~67!

With the abbreviation

RD5
p~D,D!

~D21!!
,

we have

D~D!/N'
2~D12!!

D2~D11!2~D12!D12
RD

.
A8p~D12!

D2~D11!2
e2D22RD , ~68!

using Stirling’s formula.
Taking logarithms we have

lnD~D!2 lnN52~D12!F11
lnRD

D12
1OS lnD

D D G
.2~D12!, ~69!

using result~B9! of Appendix B forRD whenD is large.
The failure criterion~66! then takes the form

lnN.
1

x
.

Sincex5F/2N, we have the following estimate for the max
mum forceF that the fiber bundle can tolerate before co
plete failure:

F.
2N

lnN
. ~70!
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Due to the assumption that the fatal burst occurs in a reg
with no previously failed fibers, the numerical prefactor is
overestimate. The size dependence

F}
N

ln N
~71!

shows that the maximum load the fiber bundle can carry d
not increase proportionally to the number of fibers, b
slower. This is to be expected since the probability of find
somewhere a stretch of weak fibers that start a fatal a
lanche increases when the number of fibers increases.
N/ ln N dependence agrees with a previous estimate
Zhang and Ding@20# and is also seen in the model wit
thresholds zero or unity@10,9#.

IV. CONCLUDING REMARKS

In this paper we have discussed burst distributions in fi
bundles with two different mechanisms for load distributi
when fibers rupture, viz. global or extremely local load
distributions. The main results are the following.

~i! For the global model the burst distribution follows
universal power lawD25/2.

~ii ! Deviations from this power-law dependence ma
however, occur for exceptional distributions of fib
strengths.

~iii ! For the local model and for a uniform distribution o
fiber thresholds we show that it is possible, although com
cated, to carry through a theoretical analysis of the bu
distribution.

~iv! A simulation study for a bundle of 20 000 fibers co
firms convincingly the theoretical results.

~v! For the local model the burst distribution falls off wit
increasing burst size much faster than for the global mo
and does not follow a power law.

~vi! The expected maximum load that a bundle with g
bal redistribution mechanism can tolerate increases pro
tional to the numberN of fibers, and proportional toN/ lnN
for the local redistribution mechanism.

APPENDIX A

The combinatorial problem in Sec. II A can be formulat
more generally as follows: Letph,n be the probability that by
distributing h nonidentical particles amongn numbered
boxes, box number 1 will contain no particles, box numbe
will contain at most 1 particle, and in general box numbei
will contain at mosti 21 particles.

Since the probability that there areh2k particles in box
numbern is equal to

S h
kD S 1

nD h2kS n21

n D k

,

we must have

ph,n5 (
k50

h S h
kD S 1

nD h2kS n21

n D k

pk,n21 . ~A1!
n

es
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,
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2

We now prove by induction that

ph,n512
h

n
. ~A2!

Assume that this holds forph,n21, all h. Insertion into the
right-hand side of Eq.~A1! gives

ph,n5 (
k50

h S h
kD S 1

nD h2kS n21

n D kS 12
k

n21D
512

h

n (
k51

h S h21
k21D S 1

nD h2kS n21

n D k21

512
h

n
,

~A3!

in accordance with Eq.~A2!. Since Eq.~A2! is valid for
n52, the induction is complete. For the application in t
text,

pn21,n5
1

n

is needed.

APPENDIX B

In Sec. III C an estimate forp(n,n,) was needed. We
base it on the recursion relations~55!, ~57!, and ~59! for
L5n11, a5n:

p~n11,n11!5ps~n11,n!, ~B1!

ps~n12,n11!5~n12!ps~n11,n!1p2~n12,n!,
~B2!

p2~n13,n11!5~n11!ps~n11,n!1~n11!p2~n12,n!.
~B3!

We have used thatps(n11,a) and p2(n12,a) vanish for
a.n.

It is easy to eliminateps by Eq.~B1!, andp2 by Eq.~B2!,
with the result

p~n11,n11!52np~n,n!2~n21!2p~n21,n21!.
~B4!

This is a three-term recursion starting off withp(1,1)52 and
p(2,2)52p(1,1) by Eq.~B4!.

With

Rn5
p~n,n!

~n21!!
, ~B5!

the recursion takes the form
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Rn1152Rn2S 12
1

nDRn21 . ~B6!

Introducing the generating function

G~z!5 (
n51

`

Rnzn, ~B7!

the recursion~B6! may be transformed to the differentia
equation

]

]z
@G~z!~12z2!/z#5G~z!,
with solution

G~z!5
2z

12z
ez/~12z!. ~B8!

Thus the radius of convergence of the power series~B7! is
unity, and therefore

lim
n→`

Rn
1/n51. ~B9!

In fact Rn}n21/4e2An for largen @21#.
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